RIS

Instrument Registration and Interface Software

MANUAL

This Page Intentionally Left Blank

© 2022 JTECH MedicalMNO60_L

Contents

PUblication INfOrmationo e e 2
M aNU A U .ttt e e e e e e e 2
Graphic Symbol Definitions o e 3

ComMMaANd-LiNe ParameterS . . ot i et e e e 4

INterprocess CoMMUNICATIONttt e et et et e et e e e e e e e 5
W INAOW MBS S A . v vttt ittt ettt ettt et e e et e e et e e e e 6

£ o 1= o 7
IS ClOS vt vttt e e e 7
IFIS RES B .ttt e e e e e e e 7
1 =1 o 8
ENabDle DVICE . oot 8
DIiSAblE DVICE. . o\ttt e e 8
Disable All DEVICES . . .ttt e e e 8
Request Calibration e e 8
DEVICE Data RaWot e e e e e e 9
Device Data CoNVEr e, oot e e e e e 10
DEaVICE EVENt . . e e e e e 10
DEVICE StatUS. . . ot e e e e e e 11
DEVICE Il . et e e 11
Device Calibration.o e e 12
Device Calibration (InClinometer) it e e e e 13

Iris-Shared Software Library e e e e 13
DeVice IDs and DeViCe Ty RS .ottt ittt ettt e e e e 13
FUNCHON R EIENCE . . . ot e e e e e e e e e e e e e e e 14

ISIriSINtEIrNAIM S A . . . v ottt e e e 15
IS SEXTEINAlM S S A . . . v ittt it ettt e e e e 15
ISVl D EVICE Y P .« o vttt ettt ettt e e e e e 15
ISValidDEVICEID . . .ottt e 15
IS REMOTE D EVICE Y PO, . o ittt ittt et et e e e e 16
ISREMOTEDEVICEID. . . o o e e e e e 16
ISCalibrated . . .o e e 16
ISINCINOM B . . ot e e e 16
GetlNterfaCE Y P . oot e e e e 17
Gt EVICETY PO ottt e e e e e e e e 17
GEtDEVICENAME . . o e e e e e 17
G EITO T Xt . .ttt e e e e 17
a0 =P 18

1

© 2022 JTECH Medical MNO60_L

JTECH Medical IRIS™ Manual
Publication Information

il

JTECH Medical Industries, Inc.
7633 S Main

Midvale, UT 84047

United States of America

(800) 985-8324

(385) 695-5000

Fax (385) 695-5001
www.jtechmedical.com

© 2022 JTECH Medical. All rights reserved. This manual is provided as a service to our customers, any other use

is strictly prohibited. This manual may not be reproduced by any means, physically or electronically, without
the express written consent of JTECH Medical.

IRIS™ is a trademark of JTECH Medical. Microsoft, Word, Notepad and Windows are trademarks or registered
trademarks of Microsoft Corporation.

2

© 2022 JTECH MedicalMNO60_L

Graphic Symbol Definitions

Symbol Meaning

“ An EN 980 symbol Identifying the Manufacturer

3

© 2022 JTECH Medical MNO60_L

Command-Line Parameters

In order to communicate with a partner application, IRIS must be initially supplied with some basic information.
Command-line parameters provide a convenient way to initialize IRIS with this data. Additional configuration

settings should also be supplied as needed.

Key Parameters Format Options

Description

Partner -Px X = Integer

Partner Type -Ox X = Integer

Interface Type -Ix X = Integer

x=1

x
1
N

x=3

Serial Port -Sx x = Integer

The parameter ‘x’ should be the HWND of the window in the
partner application that IRIS is supposed to communicate

with. The specified partner window object must be capable of
processing the custom IRIS messages defined in this document
in order for communication to work. If this parameter is omitted,
IRIS will operate in solo mode.

This parameter specifies the type of partner attempting to
communicate with Iris (eg. Tracker 5, Northstar, a customer app).
This also determines which location in the Windows registry is
used to load and save Iris’s application settings. This allows Iris
to sync its settings with JTECH partners as needed while still
maintaining separate solo mode settings, for example.

Refer to the IrisPartnerType enumerated values in the Iris code to
see which values are possible.

Refer to the InterfaceType enumerated values in the Iris code to
see possible values.

Iris runs in Legacy mode, communicating with devices via the
Tracker Legacy interface box.

Iris runs in Freedom mode, communicating with devices via the
Tracker Freedom USB receiver.

Iris runs in Echo mode, communicating with Echo devices.

(Only applies when InterfaceType is Legacy) The parameter ‘x’
specifies the COM port to be used for serial port communication.

4

© 2022 JTECH MedicalMNO60_L

Some additional parameters are also available for use but are generally only required by JTECH software. Thus
most third-paty partner applications will not need to use the following parameters

Other Parameters Format Options Description

Echo Device Mode -Ex x =Integer (Only applies when InterfaceType is Echo) Refer to the EchoDeviceType
enumerated values in the Iris code to see possible values.

Iris will attempt to connect to an Echo receiver connected via USB.

Iris will attempt to connect to an Echo device connected via USB.

Iris will attempt to connect to an Echo Commander console connected via USB.

xX X X
1
W N =

Warning Mode -W Turns on Iris’s warning mode, which causes non-critical warning messages to be
reported alongside critical error messages (which are always displayed).

Verbose Mode -V Turns on Iris’s verbose mode, which causes much more detail to be output to
Iris’s text log file. This is often helpful when trying to test and debug Iris.

History Mode -H Turns on Iris’s history mode, which results in Iris appending new entries to its
primary log file instead of overwriting it each time it starts up.

Interprocess Communication

IRIS uses application-specific Windows messages to pass information back and forth with a partner application.
The PostMessage Windows API function is all that is needed to transmit these messages. The proper way to
receive these messages depends on the development environment used to create the partner. For example, a
.NET Windows Forms application should have a form class that overrides the Form.WndProc method. Refer to
the sample Iris-Partner application and its source code for an illustration of this functionality.

Communication between IRIS and its partner is relatively straightforward. The partner must first launch the
IRIS process with appropriate command-line parameters. Upon startup, IRIS will initialize itself according to
these parameters and then respond with its own message window handle. Once the partner has received this
first message with IRIS’s handle, it can then send device command messages to IRIS. After a device is enabled
and connected, IRIS will send its partner a steady stream of device data and status messages for that device.
Multiple devices can be simultaneously connected (up to a maximum of 4), and data messages are usually sent
over at a rough rate of 10 per second per device.

5

© 2022 JTECH Medical MNO60_L

Window Messages

Message Description Sender Message ID WParam (32 bits) LParam (32 bits)
Iris Open IRIS WM _IRIS_OPEN Window Handle —

Iris Close Both WM _IRIS_CLOSE Close Type —

Iris Reset IRIS WM_IRIS_RESET Partner Handle Reset Options

Iris Error IRIS WM _IRIS_ERROR Error ID =

Enable Device Partner WM_IRIS_DEVICE_ENABLE Device ID —

Disable Device Partner WM _IRIS_DEVICE_DISABLE Device ID —

Disable All Devices Partner WM _IRIS_DEVICE_DISABLE_ALL — —

Request Calibration Partner WM_IRIS_DEVICE_GET_CALIBRATION Device ID =

Device Data Raw IRIS WM_IRIS_DEVICE_DATA_RAW Device ID Timestamp & Data
Device Data Converted IRIS WM_IRIS_DEVICE_DATA_CONVERTED Device ID Timestamp & Data
Device Event IRIS WM_IRIS_DEVICE_EVENT Device ID Timestamp & Data
Device Status IRIS WM_IRIS_DEVICE_STATUS Device ID Status & Power Level
Device Idle IRIS WM _IRIS_DEVICE_IDLE Device ID Idle Time

Device Calibration Date IRIS WM _IRIS_DEVICE_CALIB_DATE Device ID Calibration Data
Device Calibration Zero Count IRIS WM_IRIS_DEVICE_CALIB_ZERO_COUNT Device ID Calibration Data
Device Calibration Offset Count IRIS WM _IRIS_DEVICE_CALIB_OFFSET_COUNT Device ID Calibration Data
Device Calibration Offset IRIS WM_IRIS_DEVICE_CALIB_OFFSET Device ID Calibration Data
Device Calibration Inc Pos 1 IRIS WM _IRIS_DEVICE_CALIB_INC_POS_1 Device ID Calibration Data
Device Calibration Inc Pos 2 IRIS WM _IRIS_DEVICE_CALIB_INC_POS_2 Device ID Calibration Data
Device Calibration Inc Pos 3 IRIS WM _IRIS_DEVICE_CALIB_INC_POS_3 Device ID Calibration Data
Device Calibration Inc Pos 4 IRIS WM _IRIS_DEVICE_CALIB_INC_POS_4 Device ID Calibration Data

The various types of messages used for this interprocess communication are listed in the table above. Each
message is identified by a unique ID (defined in the Iris-Shared library) and contains two additional integer
parameters. The size of these parameters is always assumed to be 32 bits, even when running on 64-bit
systems. The message type determines how these parameters are interpreted. Refer to a particular message
description section to see more details about its parameters.

6

© 2022 JTECH MedicalMNO60_L

Iris Open
Parameters: The sender’s window handle.

This message is used to establish and maintain communication between IRIS and its partner. Upon startup

and periodically thereafter, IRIS will send this message to its designated partner. This informs the partner
application that IRIS is up and running and also provides the essential window handle (HWND) which allows the
partner to send messages back to IRIS.

Iris Close
Parameters: The desired CloseType value (defined below and in the Iris-Shared library).

The partner application should send IRIS this message whenever it wants IRIS to close (usually after device
communication is no longer required). The close type parameter specifies additional information about
whether IRIS should close. Upon receiving this message and determining it should close (depending on its
status), IRIS disconnects any devices still connected, closes all open ports/handles, and exits.

IRIS will also send its partner this same message (with a “notify” parameter value) anytime it closes, regardless
of what or who initiated its closing.

Name Value Description

CT_NORMAL 0x01 Standard close message, ignored if IRIS is currently visible.
CT_FORCE_CLOSE 0x02 Forceful close message, which closes IRIS even if it is visible.
CT_NOTIFY 0x03 Notification sent back to partner that IRIS is closing.

Iris Reset
Parameters: The sender’s partner handle (WParam) and other reset options (LParam).

This message is sent from a newly created instance of IRIS to any other previously running instances of IRIS. A
Windows mutex object is used to make sure only one instance of IRIS is capable of communicating with devices
at a time, so any additional instances of IRIS will use this message type to notify the original instance of their
creation before terminating. The relevant command-line parameters used to start up each new instance are
passed via this message to the original instance.

This paradigm makes life easier for partner applications. Rather than having to check for an existing IRIS
instance every time a new device connection is required, partner applications can simply create a new instance
of IRIS. This new instance of IRIS will then carry out the annoying work of looking for another instance of itself.
If it finds one, it simply forwards its startup parameters via this message and then terminates. The original
instance can then process the new parameters, resetting and reconfiguring itself as requested.

7

© 2022 JTECH Medical MNO60_L

Iris Error
Parameters: The error type.

These messages are sent to the partner whenever IRIS encounters an error. The error type corresponds to an
enumerated ErrorlD type. The Iris-Shared library defines all possible values and also provides a method for
retrieving a brief text description for each one.

Not all error codes correspond to “critical” errors, and some of the more common ones should have tailored
responses. For example, the ErrorID.FreedomNoReceiver code signifies that a Freedom USB receiver could not
be found, so a helpful response might include a prompt instructing the user to connect their receiver to the
computer.

Enable Device
Parameters: The ID of the device to be enabled.

This command instructs IRIS to enable the specified device and commence data transfer. If IRIS can successfully
connect to the device, then it will start forwarding device data messages along to the partner application. IRIS
will also periodically send device status messages indicating the device’s connection state and power level.

Disable Device
Parameters: The ID of the device to be disabled.

This command instructs IRIS to disable the specified device and stop data transfer. If IRIS determines that the
specified device is currently connected, then this connection will be closed. Once IRIS confirms the device is
disconnected, it will send a device status message indicating as much.

Disable All Devices
Parameters: None

This command instructs IRIS to disable all currently connected devices. As a result, no more data messages
from any device will be sent to the partner application until devices are enabled again.

Request Calibration
Parameters: The ID of the device whose calibration data is requested.

This command instructs IRIS to retrieve the specified device’s factory calibration data (only applicable for
instruments requiring calibration). This calibration data, once received from the device, will then be passed
along to the partner application via multiple device calibration messages.

8

© 2022 JTECH MedicalMNO60_L

Device Data Raw
Parameters: The device ID and a single sample of native (raw) data.

IRIS sends this message to its partner application whenever new data is received from an enabled device.
Under normal operating conditions, connected devices are sampled every tenth of a second, so roughly 10 data
messages will be sent every second.

Native device data is encoded in the lower 24 bits of the LParam. A data timestamp is also included, encoded
in the upper 8 bits of the LParam. This is a circular timestamp which increments from 0 to 127 then cycles back
to 0. This value can be used by the partner to ensure that data messages aren’t lost or received in the wrong
order.

In general, these raw data messages can generally be ignored by most users. However, researchers or data
enthusiasts might want to monitor these values for their own purposes. Furthermore, if manual recalibration
(or re-zeroing) is desired, then native instrument values become essential.

Older Freedom and Legacy inclinometers will not send these messages at all, but the newer Freedom and
Echo accelerometer-based inclinometers will. These newer inclinometers natively send signed 12-bit X and Y
positional values, which are then packaged together in this message as a single 24-bit value.

Native values for force gauges (e.g. grip strength gauge) and the goniometer are unsigned integral values that
increase linearly as force (or angle) increases. Native values for these instruments usually range from 0 to 4095
(0x0 to OxFFF), but future devices might use all available 24 bits. These native values must be converted before
being interpreted as meaningful force (or angle) values.

Possible native values for the heart rate monitor are 0 (no heart beat detected) and 1 (heart beat detected).

9

© 2022 JTECH Medical MNO60_L

Device Data Converted
Parameters: The device ID and a single sample of converted data.

Like the corresponding raw device data message, IRIS sends this message to its partner application whenever
new data is received from an enabled device. The timestamp is calculated and encoded the same way as it is
for raw data messages.

For most JTECH instruments, converted data values are calculated using their stored factory calibration values.
Thus if these values are missing or invalid, no converted data messages can be sent.

Converted data is encoded as a signed 24-bit integer which is equal to the actual decimal value multiplied by
1,000 and rounded to the nearest whole number. This allows us to send values as large as 8,388 with up to 3
decimal points of precision.

Converted data for angular devices (inclinometers and goniometers) will range from 0° to 359°. It should be
noted that for the older Freedom and Legacy inclinometers, these angles are relative to an arbitrary 0° point
established when the device is first powered on. Converted values for force gauges are always sent in Newtons.
Converted values for heart rate monitors are calculated pulse rates and are sent in beats per minute (bpm).
Some examples: A goniometer’s calculated angle of 234° is encoded as 0x039210 (234,000). A static strength
gauge’s calculated push force (push values are sent as negative values) of 123.456 N is encoded as OxFE1DCO
(-123,456). A heart rate monitor’s calculated pulse rate of 88 bpm is encoded as 0x0157C0 (88,000).

Device Event
Parameters: The device ID and the event type.

IRIS sends this to its partner application whenever a defined event is triggered by an enabled device. Currently
the primary inclinometer, the goniometer, and the hand/foot switches are the only devices that can raise these
events, which occur whenever an Enter or Next button is pressed on the corresponding device.

Much like the device data message, the lower 24 bits of LParam indicate which event occurred, with the
following possible values (defined in the Iris-Shared library):

Name Value Description
DE_ENTER 0x01 Enter button pressed
DE_NEXT 0x02 Next button pressed

A data timestamp is also included, encoded in the upper 8 bits of the LParam. This timestamp is based on the
same timestamp format established for device data messages, so it can be used to synchronize each event to
the data which was sampled at that same time.

10

© 2022 JTECH MedicalMNO60_L

Device Status
Parameters: The device ID and its current status, namely its connection state and current power level.

IRIS sends these messages to its partner application whenever it detects changes to a device’s status
(determined from various internal messages received from the Tracker Freedom wireless receiver). These
messages contain information regarding the device’s connection status and its power level.

The connection state is encoded in the upper 16 bits of LParam, with the following possible values (defined in
the Iris-Shared library):

Name Value Description

DS_UNKNOWN 0x00 Device state unknown (yet to be determined)

DS_DISABLED 0x01 Device disconnected (sent after a disable device request succeeds)

DS_ENABLED 0x02 Device connected (sent after an enable device request succeeds)

DS_CONNECTING 0x03 Device connecting (sent after a device is enabled but not yet connected)

DS_INTERRUPTED 0x04 Device interrupted (sent after a device is enabled but loses connection with
Iris for a few seconds).

DS_LOST 0x05 Device lost (sent after a device connection is interrupted for several seconds)

DS_ERROR 0x06 Device is in an error state

The device’s power level is encoded in the lower 16 bits of LParam, with the following possible values (defined
in the Iris-Shared library):

Name Value Description

PL_UNKNOWN 0x00 Power level unknown or not applicable
PL_VERY_LOW 0x01 Very low power level (recharge immediately)
PL_LOW 0x02 Low power level (roughly 5-20 minutes of power left)
PL_NORMAL 0x03 Normal power level

Device Idle
Parameters: The device ID and the idle duration (in seconds).

Note: This message is currently sent for Echo instruments only.

Iris sends these messages to its partner application whenever the idle state of a connected device changes. This
allows partners to respond appropriately, perhaps notifying the user or even disabling the idle device.

Iris detects idleness (inactivity) by monitoring the incoming data stream of each connected device. If enough

11

© 2022 JTECH Medical MNO60_L

time passes with only minor fluctuations in data, the corresponding device is considered to be idle, and this
message is generated. The idle time threshold is set at 5 minutes (300 seconds).

Idle messages will be generated for every multiple of the idle time interval (i.e. every 5 minutes) and will
continue as long as the device remains idle.

Once an idle device becomes active again (indicated by non-negligible changes in its data stream), this same
idle message will be sent, but with its idle duration parameter (LParam) set to 0. Thus an idle duration of 0
effectively signifies the device is not idle anymore.

For example, suppose a grip gauge is connected but is left lying untouched on a table for 18 minutes. After

5 minutes have passed, Iris will send this message with an idle duration parameter of 300 (300 s = 5 min).
Another message will be sent at 10 minutes with an idle duration of 600, and a third at 15 minutes with a value
of 900. After 18 minutes the grip gauge is picked up again and a test is started. This will generate another idle
message, but this time with an idle duration of 0. If the grip gauge is continuously used thereafter, then no
more idle messages will be sent.

Device Calibration
Parameters: The device ID and various factory calibration data.

IRIS sends these messages to its partner application whenever it receives factory calibration data from a
connected instrument. These messages will result from a request for factory calibration data but can also arrive
unsolicited (usually right after a device first connects). Because the calibration data can’t all fit within the 32-bit
LParam field at once, multiple device calibration messages must be sent.

The calibration date is sent as an integer date, defined as the number of days elapsed between the factory
calibration date and January 1, 2005. Zero and offset counts are already integer values and can therefore be
sent directly without any conversion.

Offsets are encoded the same way as converted data values, i.e. by converting the original value to the
appropriate units, multiplying the result by 1000, and rounding to the nearest integer. For force devices the
offset is the weight used to calibrate the device (converted to Newtons). For goniometers, the offset should
always be 180° since they are calibrated using 180° as the offset position.

For example, suppose a pinch device was factory calibrated on February 29, 2012 using an offset weight of 20
Ib. Its calibration date would be encoded as 0xA37 (2615 day difference) and its offset would be 0x15B84

(88964 = 88.964 N * 1000 and 20 /b =~ 88.964432 N)

12

© 2022 JTECH MedicalMNO60_L

Device Calibration (Inclinometer)
Parameters: The device ID and its factory calibration data.

IRIS sends these messages to its partner application whenever it receives factory calibration data from a
connected inclinometer. These messages will result from a request for factory calibration data but can also
arrive unsolicited (usually right after a device first connects). Because the calibration data can’t all fit within the
32-bit LParam field at once, multiple device calibration messages must be sent.

The inclinometer’s calibration date is sent using the standard calibration date message, while the four pairs of
inclinometer calibration positions are each encoded in their own message. The x and y values are all signed 12-
bit integers, so each one is first converted to a signed 16-bit integer. The converted x value is then stored in the
upper 16 bits of LParam, and the y value is stored in the lower 16 bits.

Iris-Shared Software Library

Iris-Shared is a C++/CLI library intended for use by both IRIS and its partners. As a .NET assembly it can be
added and used by other .NET projects (regardless of programming language) relatively easily. It also contains
a pair of C++ source files (IrisShared.h and IrisShared.cpp) that can be directly embedded and compiled within
other C++ projects (obviating the need to link to and deploy the Iris-Shared library).

The primary purpose of Iris-Shared is to provide the various constants and enumerated values required for
IRIS’s interprocess communication, including the message IDs which identify each IRIS-specific Windows
message. Most of these are described in more detail in the “Window Messages” section of this document.
Some additional functions are also provided, most of which help classify IRIS messages and JTECH devices, and
these are detailed below.

Device IDs and Device Types

Several of the Iris-Shared functions deal with device IDs and device types, which bear some additional
explanation. Each JTECH device is identified by a unique, hex integer device ID (serial number), and its device
type is actually embedded within that device ID. Iris-Shared provides functions for determining a device’s type
from its ID, which can then be used in other Iris-Shared functions to retrieve additional information concerning
that device type.

In many cases knowing a particular device’s type is important, especially when determining how its data
messages should be interpreted and displayed. The currently defined device types are displayed below.

13

© 2022 JTECH Medical MNO60_L

Device Device Type (Hex)
Wireless USB Receiver 0x00
Inclinometer (Primary) 0x01
Inclinometer (Secondary) 0x02
Muscle Tester 0x03
Isometric Muscle Tester (IsoTrack) 0x04
Static Strength Gauge 0x05
Goniometer 0x06
Algometer 0x07
Grip Strength Gauge 0x08
Pinch Strength Gauge 0x09
Heart Monitor 0x0A
Foot Switches 0x0B
Hand Switch 0x0C
Commander Console 0x0D
Dualer (Primary) 0xO0E
Dualer (Secondary) OxOF

Function Reference
This section provides detailed information regarding each available function and its possible parameters.

Only the C++/CLI syntax of each function is provided since the corresponding C++ versions contained in the
IrisShared.* files are virtually identical.

IslrisMessage

Syntax
Parameters

Result

static bool IsIrisMessage(int messagelD)

messagelD: The ID of the Windows message to check.

True if the message ID falls within the range used for IRIS messages, false otherwise.

This function is most useful when first processing incoming Windows messages (usually in the partner
message window’s WndProc method or its equivalent). It allows client code to quickly distinguish
between IRIS and non-IRIS messages.

14

© 2022 JTECH MedicalMNO60_L

IsirisinternalMessage

Syntax static bool IsIrisInternalMessage(int messageID)
Parameters messagelD: The ID of the Windows message to check.
Result True if the message ID falls within the range used for “internal” IRIS messages, false otherwise.

This function is almost identical to IslrisMessage, except that only the subset of IRIS messages that are
categorized as “internal” is considered. Internal messages are only used within the IRIS application, so
partner code shouldn’t ever need to use this function.

IsirisExternalMessage

Syntax static bool IsIrisExternalMessage(int messagelD)
Parameters messagelD: The ID of the Windows message to check.
Result True if the message ID falls within the range used for “external” IRIS messages, false otherwise.

This function is almost identical to IslrisMessage, except that only the subset of IRIS messages that are
categorized as “external” is considered. External messages are intended to be passed between IRIS
and its partner. All possible external messages are listed and detailed elsewhere in this document.

IsValidDeviceType

Syntax static bool IsValidDeviceType(DeviceType device)
Parameters device: The DeviceType value to check for validity.
Result True if ‘device’ matches any of our valid device types, false if Unknown or an undefined value.

This function determines whether the specified device type matches one of our predefined
enumerated values.

IsValidDevicelD
Syntax static bool IsValidDeviceID(int deviceID, InterfaceType interfacetype)
Parameters devicelD: The device ID to check for validity.
interfaceType: The InterfaceType corresponding to the device ID being checked.
Result True if the device ID is valid for a device within the InterfaceType device family, false otherwise.

This function determines whether the specified device ID is valid, which is especially handy when
verifying a device ID manually entered by a user. Because different device families (represented by the

various InterfaceType enumerated values) have different device ID formats, this additional parameter
is needed.

15

© 2022 JTECH Medical MNO60_L

IsRemoteDeviceType

Syntax static bool IsRemoteDeviceType(DeviceType device)
Parameters device: The DeviceType value to check.
Result True if ‘device’ matches any of our valid remote device types, false otherwise.

This function determines whether the specified device type matches one of our predefined
enumerated values for remote devices. Remote device types can communicate wirelessly with
a separate wireless receiver, while the other device types must always be directly plugged in.
Sometimes it can be useful to quickly make this distinction.

IsRemoteDevicelD

Syntax static bool IsRemoteDeviceID(int deviceID, InterfaceType interfacetype)

Parameters devicelD: The device ID to check.
interfaceType: The InterfaceType corresponding to the device ID being checked.

Result True if the device ID is valid for a remote device within the InterfaceType device family, false
otherwise.

This function determines whether the specified device ID is a remote device type. It is almost identical
to the IsValidDevicelD function, but only remote device types are considered valid here (see the
IsRemoteDeviceType function as well).

IsCalibrated

Syntax static bool IsCalibrated(DeviceType device)
Parameters device: The DeviceType value to check.
Result True if ‘device’ is a device type that requires calibration.

This function determines whether the specified device type corresponds to a device that requires
calibration (i.e. test instruments that measure force or angles). Sometimes it can be useful to quickly
classify devices based on this distinction.

IsInclinometer

Syntax static bool IsInclinometer(DeviceType device)
Parameters device: The DeviceType value to check.
Result True if ‘device’ is an inclinometer.

This function determines whether the specified device is an inclinometer. Sometimes it can be useful
to quickly classify devices based on this distinction.

16

© 2022 JTECH MedicalMNO60_L

GetinterfaceType

Syntax
Parameters

Result

static Interfacetype GetInterfaceType(int devicelD)

devicelD: The device ID to check.

The InterfaceType (device family) matching the specified ‘devicelD’, or Unknown if this cannot be
determined.

This function attempts to determine which device family a given device ID belongs to. This can usually

be deduced from most valid device IDs (the number of bits used in the ID is the most telling indicator).

However, other device IDs might be valid in multiple families (or none), in which case this function
returns the result Unknown.

GetDeviceType

static DeviceType GetDeviceType(int deviceID, InterfaceType interfaceType)

Syntax
Parameters devicelD: The device ID to evaluate.
interfaceType: The InterfaceType corresponding to the device ID being checked.
Result The DeviceType matching the specified ‘devicelD’, or Unknown if this cannot be determined.

This function attempts to determine which device type a given device ID corresponds to. This is
possible because the device type is embedded within the device ID, but it can only be determined

with certainty if the device family (interface type) is also known.

GetDeviceName

Syntax
Parameters

Result

static String” GetDeviceName(DeviceType device)

device: A valid DeviceType value.

A short text description matching the specified ‘device’, or an empty (but not null) string if no

match is found.

This function retrieves the short text “name” of the specified device type (e.g. “Goniometer”).

GetErrorText
Syntax static String” GetErrorText(ErrorID errorID)
Parameters errorID: A valid ErrorlD value.
Result A short text description matching the specified ‘errorID’, or “Unknown IRIS Error” if no match is
found.

This function retrieves the short text description for the specified error ID. This is most useful when an

“Iris Error” message is received and client code wishes to display a simple error message.

17

© 2022 JTECH Medical MNO60_L

Index

CommaNd-Ling ParamEtersottt e 4
Device Calibration. . ..o 12
Device Calibration (INClINOMETEr)ot e e e e e e e e e 13
Device Data ConVEItettt e e e 10
DEVICE Data RaW . . . ot e e e e e e 9
DEVICE EVENt . .. e e e e e e 10
DEVICE Al o et 11
DeVice IDS and DeVICE TYPOS . o ittt ettt e et et et e e e 13
DaVICE SEatUS. . . ottt e e e e e e e e 11
DiSable All DEVICES . . ottt e e e 8
DiSAblE DOVICE. . v vttt e 8
ENablE DOVICE . ottt e 8
FUNCHON REIEIENCE . ottt e e e e e e e e e e e e e e e 14
GEtDEVICENGME . ..t e e e e e e 17
LCTSTd BTSN ol = 1Y/ o = 17
(T2 o = o o =D G 17
GetINEer faCE Y P . .ottt e e e e 17
Graphic Symbol Definitionso e 3
INterprocess CoMMUNICATIONttt ettt e et e e e e e e e e e 5
IS ClOS o vttt it e e e 7
L = o oY 8
1 T3 o = o 7
IFIS RES B . o ittt e e e e e e e 7
Iris-Shared Software Library e e 13
ISCalibrated . . .ot e 16
IS N OB . o . et e e 16
ISIF IS EXTEINAIMESSAEE. . . v ot ittt et e e e e e e 15
ISIFISINEEINAIMESSAEE . . . v ottt et e e e e e e 15
ISREMOTEDEVICEID. . . .t e e e e e e e e 16
IS REMOTE D BV CE Y P o o vttt ettt et e e e e e e e 16
ISValidDEVICRID . . o ettt e e e 15
IV T | L] ol 577 15
V=Y 10 =Ty o0 =Y oA 2
PUBlication INformMationo e 2
Request Calibration e 8
WiNAOW VBSOS .« . . i ittt ettt ettt ettt e e e e e e e e e e 6

18

© 2022 JTECH MedicalMNO60_L

